
LEARN VERSION
CONTROL WITH GIT

Tobias Günther

A step-by-step course for the complete beginner

Learn Version Control with Git
A step-by-step course for the complete beginner

Copyright © 2017 by Tobias Günther

Editor: Alexander Rinaß

Design: Fabricio Rosa Marques

This book is only possible because of a team of outstanding people.

Thank you Julian, Alex, Chris, Pete, Danny, Heiko, Sam, and Fabricio.

Trademarked names may appear in this book. Rather than use a trademark symbol with ev-
ery occurrence of a trademarked name, we use the names only in an editorial fashion and
to the benefit of the trademark owner, with no intention of infringement of the trademark.

The information in this book is distributed on an “as is” basis, without warranty. Although
every precaution has been taken in the preparation of this work, the author(s) shall not
have any liability to any person or entity with respect to any loss or damage caused or al-
leged to be caused directly or indirectly by the information contained in this work.

Version: 2017-02-01

Introduction
About Being ProfessionalCHAPTER 1

THE BASICS

Chapter 1: The Basics | Working on Your Project 30

Working on Your Project
No matter if you created a brand new repository or if you cloned

an existing one - you now have a local Git repository on your com-

puter. This means you‘re ready to start working on your project:

use whatever application you want to change, create, delete, move,

copy, or rename your files.

 A CONCEPT

The Status of a File
In general, files can have one of two statuses in Git:

 R untracked: a file that is not under version control, yet, is called “un-

tracked”. This means that the version control system doesn‘t watch

for (or “track”) changes to this file. In most cases, these are either

files that are newly created or files that are ignored and which you

don‘t want to include in version control at all.

 R tracked: all files that are already under version control are called

“tracked”. Git watches these files for changes and allows you to

commit or discard them.

The Staging Area

At some point after working on your files for a while, you‘ll want to

save a new version of your project. Or in other words: you‘ll want to

commit some of the changes you made to your tracked files.

Chapter 1: The Basics | Working on Your Project 31

 B THE GOLDEN RULES OF VERSION CONTROL

#1: Commit Only Related Changes
When crafting a commit, it‘s very important to only include changes

that belong together. You should never mix up changes from multip-

le, different topics in a single commit. For example, imagine wrapping

both some work for your new login functionality and a fix for bug

#122 in the same commit:

 R Understanding what all those changes really mean and do gets hard

for your teammates (and, after some time, also for yourself). Some-

one who‘s trying to understand the progress of that new login func-

tionality will have to untangle it from the bugfix code first.

 R Undoing one of the topics gets impossible. Maybe your login func-

tionality introduced a new bug. You can‘t undo just this one without

undoing your work for fix #122, also!

Instead, a commit should only wrap related changes: fixing two dif-

ferent bugs should produce (at the very least) two separate commits;

or, when developing a larger feature, every small aspect of it might be

worth its own commit.

Small commits that only contain one topic make it easier for other

members of your team to understand the changes - and to possibly

undo them if something went wrong.

However, when you‘re working full-steam on your project, you can‘t

always guarantee that you only make changes for one and only one

topic. Often, you work on multiple aspects in parallel.

This is where the “Staging Area”, one of Git‘s greatest features, comes in

very handy: it allows you to determine which of your local changes shall

Chapter 1: The Basics | Working on Your Project 32

be committed. Because in Git, simply making some changes doesn‘t mean

they‘re automatically committed. Instead, every commit is “hand-craft-

ed”: each change that you want to include in the next commit has to be

marked explicitly (“added to the Staging Area” or, simply put, “staged”).

stage commit

Staging Area
Changes included in

the Next Commit

Local Repository
The ”.git“ Folder

Working Copy
Your Project’s Files

M M
Changes that were added to

the Staging Area will be

included in the next commit

?

Untracked

Changes that are not staged will

not be committed & remain as

local changes until you stage &

commit or discard them

All changes contained in a

commit are saved in the local

repository as a new revision

M

Chapter 1: The Basics | Working on Your Project 33

Getting an Overview of Your Changes

Let‘s have a look at what we‘ve done so far. To get an overview of

what you‘ve changed since your last commit, you simply use the “git

status” command:

$ git status
On branch master
Changes not staged for commit:
(use “git add/rm <file>... ” to update what will be committed)
(use “git checkout -- <file>...” to discard changes in working
directory)
#
modified: css/about.css
modified: css/general.css
deleted: error.html
modified: imprint.html
modified: index.html
#
Untracked files:
(use “git add <file>...” to include in what will be committed)
new-page.html
no changes added to commit (use “git add” and/or “git commit -a”)

Thankfully, Git provides a rather verbose summary and groups your

changes in 3 main categories:

 R “Changes not staged for commit”

 R “Changes to be committed”

 R “Untracked files”

Chapter 1: The Basics | Working on Your Project 34

Getting Ready to Commit

Now it‘s time to craft a commit by staging some changes with the

“git add” command:

$ git add new-page.html index.html css/*

With this command, we added the new “new-page.html” file, the

modifications in “index.html”, and all the changes in the “css” fold-

er to the Staging Area. Since we also want to record the removal of

“error.html” in the next commit, we have to use the “git rm” com-

mand to confirm this:

$ git rm error.html

Let‘s use “git status” once more to make sure we‘ve prepared the

right stuff:

$ git status
On branch master
Changes to be committed:
(use “git reset HEAD <file>...” to unstage)
#
modified: css/about.css
modified: css/general.css
deleted: error.html
modified: index.html
new file: new-page.html
#
Changes not staged for commit:
(use “git add <file>...” to update what will be committed)
(use “git checkout -- <file>...” to discard changes in working
directory)
#
modified: imprint.html
#

Assuming that the changes in “imprint.html” concerned a different

topic than the rest, we‘ve deliberately left them unstaged. That way,

Chapter 1: The Basics | Working on Your Project 35

they won‘t be included in our next commit and simply remain as

local changes. We can then continue to work on them and maybe

commit them later.

Committing Your Work

Having carefully prepared the Staging Area, there‘s only one thing left

before we can actually commit: we need a good commit message.

 B THE GOLDEN RULES OF VERSION CONTROL:

#2: Write Good Commit Messages
Time spent on crafting a good commit message is time spent well: it

will make it easier to understand what happened for your teammates

(and after some time also for yourself).

Begin your message with a short summary of your changes (up to

50 characters as a guideline). Separate it from the following body

by including a blank line. The body of your message should provide

detailed answers to the following questions: What was the motivation

for the change? How does it differ from the previous version?

The “git commit” command wraps up your changes:

$ git commit -m “Implement the new login box”

If you have a longer commit message, possibly with multiple para-

graphs, you can leave out the ”-m” parameter and Git will open an

editor application for you (which you can also configure via the

“core.editor” property).

Chapter 1: The Basics | Working on Your Project 36

 A CONCEPT

What Makes a Good Commit?
The better and more carefully you craft your commits, the more use-

ful will version control be for you. Here are some guidelines about

what makes a good commit:

 R Related Changes: As stated before, a commit should only contain

changes from a single topic. Don‘t mix up contents from different

topics in the same commit. This will make it harder to understand

what happened.

 R Completed Work: Never commit something that is half-done. If

you need to save your current work temporarily in something like a

clipboard, you can use Git‘s “Stash” feature (which will be discussed

later in the book). But don‘t eternalize it in a commit.

 R Tested Work: Related to the point above, you shouldn‘t commit

code that you think is working. Test it well - and before you commit

it to the repository.

 R Short & Descriptive Messages: A good commit also needs a good

message. See the paragraph above on how to “Write Good Commit

Messages” for more about this.

Finally, you should make it a habit to commit often. This will automatically

help you to keep your commits small and only include related changes.

Inspecting the Commit History

Git saves every commit that is ever made in the course of your proj-

ect. Especially when collaborating with others, it‘s important to see

recent commits to understand what happened.

Chapter 1: The Basics | Working on Your Project 37

 F NOTE

Later in this book, in the Remote Repositories chapter, we‘ll talk about

how to exchange data with your coworkers.

The “git log” command is used to display the project‘s commit history:

$ git log

It lists the commits in chronological order, beginning with the new-

est item. If there are more items than it can display on one page, the

command line indicates this by showing a colon (”:”) at the end of

the page. You can then go to the next page with the SPACE key and

quit with the “q” key.

commit 2dfe283e6c81ca48d6edc1574b1f2d4d84ae7fa1
Author: Tobias Günther <support@learn-git.com>
Date: Fri Jul 26 10:52:04 2013 +0200

 Implement the new login box

commit 2b504bee4083a20e0ef1e037eea0bd913a4d56b6
Author: Tobias Günther <support@learn-git.com>
Date: Fri Jul 26 10:05:48 2013 +0200

 Change headlines for about and imprint

commit 0023cdddf42d916bd7e3d0a279c1f36bfc8a051b
Author: Tobias Günther <support@learn-git.com>
Date: Fri Jul 26 10:04:16 2013 +0200

 Add simple robots.txt

Chapter 1: The Basics | Working on Your Project 38

Every commit item consists (amongst other things) of the following

metadata:

 R Commit Hash

 R Author Name & Email

 R Date

 R Commit Message

 D GLOSSARY

The Commit Hash
Every commit has a unique identifier: a 40-character checksum cal-

led the “commit hash”. While in centralized version control systems

like Subversion or CVS, an ascending revision number is used for this,

this is simply not possible anymore in a distributed VCS like Git: The

reason herefore is that, in Git, multiple people can work in parallel,

commiting their work offline, without being connected to a shared

repository. In this scenario, you can‘t say anymore whose commit is

#5 and whose is #6.

Since in most projects, the first 7 characters of the hash are enough

for it to be unique, referring to a commit using a shortened version is

very common.

Apart from this metadata, Git also allows you to display the detailed

changes that happened in each commit. Use the ”-p” flag with the

“git log” command to add this kind of information:

Chapter 1: The Basics | Working on Your Project 39

$ git log -p
commit 2dfe283e6c81ca48d6edc1574b1f2d4d84ae7fa1
Author: Tobias Günther <support@learn-git.com>
Date: Fri Jul 26 10:52:04 2013 +0200

 Implement the new login box

diff --git a/css/about.css b/css/about.css
index e69de29..4b5800f 100644
--- a/css/about.css
+++ b/css/about.css
@@ -0,0 +1,2 @@
+h1 {
+ line-height:30px; }
\ No newline at end of file
di.ff --git a/css/general.css b/css/general.css
index a3b8935..d472b7f 100644
--- a/css/general.css
+++ b/css/general.css
@@ -21,7 +21,8 @@ body {

 h1, h2, h3, h4, h5 {
 color:#ffd84c;
- font-family: “Trebuchet MS”, “Trebuchet”; }
+ font-family: “Trebuchet MS”, “Trebuchet”;
+ margin-bottom:0px; }

 p {
 margin-bottom:6px;}
diff --git a/error.html b/error.html
deleted file mode 100644
index 78alc33..0000000
--- a/error.html
+++ /dev/null
@@ -1,43 +0,0 @@
- <html>
-
- <head>
- <title>Tower :: Imprint</title>
- <link rel=“shortcut icon” href=“img/favicon.ico” />
- <link type=“text/css” href=“css/general.css” />
- </head>
-

Later in this book, we‘ll learn how to interpret this kind of output in

the chapter Inspecting Changes in Detail with Diffs.

Chapter 1: The Basics | Working on Your Project 40

Time to Celebrate

Congratulations! You‘ve just taken the first step in mastering version

control with Git! Pat yourself on the back and grab a beer before

moving on.

Introduction
About Being Professional

CHAPTER 4

ADVANCED
TOPICS

Chapter 4: Advanced Topics | Undoing Things 85

Undoing Things
One of the greatest aspects about Git is that you can undo almost

anything. In the end, this means that you actually can‘t mess up: Git

always provides a safety net for you.

Fixing the Last Commit

No matter how carefully you craft your commits, sooner or lat-

er you‘ll forget to add a change or mistype the commit‘s message.

That‘s when the “--amend” flag of the “git commit” command comes

in handy: it allows you to change the very last commit really easily.

If you just want to correct the commit message, you simply “commit

again” - without any staged changes but with the correct message:

$ git commit --amend -m “This is the correct message”

In case you want to add some more changes to that last commit,

you can simply stage them as normal and then commit again:

$ git add <some/changed/files>
$ git commit --amend -m “commit message

Chapter 4: Advanced Topics | Undoing Things 86

 B The Gold Rules of Version Control
#5: Never Amend Published Commits

Using the “amend” option is a great little helper that you‘ll come to

appreciate yourself very quickly. However, you‘ll need to keep the

following things in mind when using it:

 R (a) It can only be used to fix the very last commit. Older commits

can‘t be modified with “amend”.

 R (b) You should never “amend” a commit that has already been pub-

lished / pushed to a remote repository! This is because “amend”

effectively produces a completely new commit object in the back-

ground that replaces the old one. If you‘re the only person who had

this commit, doing this is safe. However, after publishing the orig-

inal commit on a remote, other people might already have based

new work on this commit. Replacing it with an amended version

will cause problems.

Chapter 4: Advanced Topics | Undoing Local Changes 87

Undoing Local Changes
Changes are called “local” when they haven‘t been committed, yet:

all the modifications that are currently present in your working di-

rectory are “local”, uncommitted changes.

Sometimes, you‘ll produce code that... well... is worse than what you

had before. These are the times when you want to discard these

changes and start fresh with the last committed version.

To restore a file to its last committed version, you use the “git

checkout” command:

$ git checkout HEAD file/to/restore.ext

You already know that the “checkout” command is mainly used to

switch branches. However, if you use it with the HEAD reference

and the path to a file, it will discard any uncommitted changes in

that file.

If you need to discard all current changes in your working copy and

want to restore the last committed version of your complete proj-

ect, the “git reset” command is your friend:

$ git reset --hard HEAD

This tells Git to replace the files in your working copy with the

“HEAD” revision (which is the last committed version), discarding all

local changes.

Chapter 4: Advanced Topics | Undoing Local Changes 88

 F NOTE

Discarding uncommitted changes cannot be undone. This is because

they have never been saved in your repository. Therefore, Git has no

chance to restore this kind of changes.

Always keep this in mind when discarding local changes.

Undoing Committed Changes

Sometimes you‘ll want to undo a certain commit. E.g. when you notice

that your changes were wrong, when you introduced a bug, or simply

when the customer has decided he doesn‘t want this anymore.

Using the “git revert” command is one possibility to undo a previous

commit. However, the command doesn‘t delete any commits. In-

stead, it reverts the effects of a certain commit, effectively undoing

it. It does this by producing a new commit with changes that revert

each of the changes in that unwanted commit. For example, if your

original commit added a word in a certain place, the reverting com-

mit will remove exactly this word, again.

C1

Modifies “index.html” in the “opposite” way:
(old) <div>About</div>
(new) <div>About This Project</div>

C3 C4

Modified “index.html”:
(old) <div>About This Project</div>
(new) <div>About</div>

C2

Reverting Commit

Chapter 4: Advanced Topics | Undoing Local Changes 89

Simply provide the hash of the commit you want to revert:

$ git revert 2b504be
[master 364d412] Revert “Change headlines for about and imprint”
 2 files changed, 2 insertions(+), 2 deletions (-)

$ git log
commit 364d412a25ddce997ce76230598aaa7b9759f434
Author: Tobias Günther <support@learn-git.com>
Date: Tue Aug 6 10:23:57 2013 +0200

 Revert “Change headlines for about and imprint”

 This reverts commit 2b504bee4083a20e0ef1e037eea0bd913a4d56b6.

Another tool to “undo” commits is the “git reset” command. It nei-

ther produces any new commits nor does it delete any old ones. It

works by resetting your current HEAD branch to an older revision

(also called “rolling back” to that older revision):

$ git reset --hard 2be18d9

After this command, your currently checked out branch will be at

revision 2be18d9. The commits that came after this one are effec-

tively undone and are no longer visible in the history of this branch.

C1 master HEADC3 C4C2

C1 master HEADC2

Before reset

After reset

Be careful, however: calling the command with the “--hard” option

will discard all local changes that you might currently have.

Chapter 4: Advanced Topics | Undoing Local Changes 90

The project is completely restored as it was in that past revision.

If you call it with “--keep” instead of “--hard”, all changes from

rolled back revisions will be preserved as local changes in your

working directory.

 F NOTE

Just like “revert”, the “reset” command also doesn‘t delete any com-

mits. It just makes it look as if they hadn‘t existed and removes them

from the history. However, they are still stored in Git‘s database for at

least 30 days. So if you should ever notice you _accidentally_ remo-

ved commits you still need, one of your Git expert colleagues will still

be able to restore them for you.

Both commands, revert and reset, only affect your current HEAD

branch. Therefore, you should make sure you have checked out the

correct branch before starting to play with them.

